1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
import java.util.Random; public class BP { private final double[][] layers; private final double[][] deltas; private final double[][][] weights; private final double[][][] prevUptWeights; private final double[] target; private double eta; private double momentum; private final Random random; public BP(int[] size, double eta, double momentum) { int len = size.length; layers = new double[len][]; for(int i = 0; i<len; i++) { layers[i] = new double[size[i] + 1]; } target = new double[size[len - 1] + 1]; deltas = new double[len - 1][]; for(int i = 0; i < (len - 1); i++) { deltas[i] = new double[size[i + 1] + 1]; } random = new Random(100000); weights = new double[len - 1][][]; for(int i = 0; i < (len - 1); i++) { weights[i] = new double[size[i] + 1][size[i + 1] + 1]; } randomizeWeights(weights); prevUptWeights = new double[len - 1][][]; for(int i = 0; i < (len - 1); i++) { prevUptWeights[i] = new double[size[i] + 1][size[i + 1] + 1]; } this.eta = eta; this.momentum = momentum; } private void randomizeWeights(double[][][] matrix) { for (int i = 0, len = matrix.length; i != len; i++) { for (int j = 0, len2 = matrix[i].length; j != len2; j++) { for(int k = 0, len3 = matrix[i][j].length; k != len3; k++) { double real = random.nextDouble(); matrix[i][j][k] = random.nextDouble() > 0.5 ? real : -real; } } } } public BP(int[] size) { this(size, 0.25, 0.9); } public void train(double[] trainData, double[] target) { loadValue(trainData,layers[0]); loadValue(target,this.target); forward(); calculateDelta(); adjustWeight(); } private void loadValue(double[] value,double [] layer) { if (value.length != layer.length - 1) throw new IllegalArgumentException("Size Do Not Match."); System.arraycopy(value, 0, layer, 1, value.length); } private void forward() { for(int i = 0; i < (layers.length - 1); i++) { forward(layers[i], layers[i+1], weights[i]); } } private void calculateDelta() { outputErr(deltas[deltas.length-1],layers[layers.length - 1],target); for(int i = (layers.length - 1); i > 1; i--) { hiddenErr(deltas[i - 2],layers[i - 1],deltas[i - 1],weights[i - 1]); } } private void adjustWeight() { for(int i = (layers.length - 1); i > 0; i--) { adjustWeight(deltas[i - 1], layers[i - 1], weights[i - 1], prevUptWeights[i - 1]); } } private void forward(double[] layer0, double[] layer1, double[][] weight) { layer0[0] = 1.0; for (int j = 1, len = layer1.length; j != len; ++j) { double sum = 0; for (int i = 0, len2 = layer0.length; i != len2; ++i) { sum += weight[i][j] * layer0[i]; } layer1[j] = sigmoid(sum); } } private void outputErr(double[] delte, double[] output,double[] target) { for (int idx = 1, len = delte.length; idx != len; ++idx) { double o = output[idx]; delte[idx] = o * (1d - o) * (target[idx] - o); } } private void hiddenErr(double[] delta, double[] layer, double[] delta1, double[][] weights) { for (int j = 1, len = delta.length; j != len; ++j) { double o = layer[j]; double sum = 0; for (int k = 1, len2 = delta1.length; k != len2; ++k) sum += weights[j][k] * delta1[k]; delta[j] = o * (1d - o) * sum; } } private void adjustWeight(double[] delta, double[] layer, double[][] weight, double[][] prevWeight) { layer[0] = 1; for (int i = 1, len = delta.length; i != len; ++i) { for (int j = 0, len2 = layer.length; j != len2; ++j) { double newVal = momentum * prevWeight[j][i] + eta * delta[i] * layer[j]; weight[j][i] += newVal; prevWeight[j][i] = newVal; } } } private double sigmoid(double val) { return 1d / (1d + Math.exp(-val)); } public int test(double[] inData) { if (inData.length != layers[0].length - 1) throw new IllegalArgumentException("Size Do Not Match."); System.arraycopy(inData, 0, layers[0], 1, inData.length); forward(); return getNetworkOutput(); } private int getNetworkOutput() { int len = layers[layers.length - 1].length; double[] temp = new double[len - 1]; for (int i = 1; i != len; i++) temp[i - 1] = layers[layers.length - 1][i]; double max = temp[0]; int idx = -1; for (int i = 0; i <temp.length; i++) { if (temp[i] >= max) { max = temp[i]; idx = i; } } return idx; } public void setEta(double eta) { this.eta = eta; } public void setMomentum(double momentum){ this.momentum = momentum; } }
|